

「プラズマと物質科学」の研究討論会 於 核融合科学研究所 (2002.11.19)

•ペアイオンプラズマの生成方法 •ペアイオンプラズマ中の静電波動伝搬 •ペアイオンプラズマを用いたフラーレンダイマー形成

Research Background

A plasma usually consists of electrons and positive ions. The mass ratio of positive ions to electrons is very high. $(m_{+}/m_{e} = 10^{4} \sim 10^{5})$

On the other hand . . .

Pair Plasmas consisting of positive and negative charged particles with equal mass $(m_{+}/m_{-} = 1)$ have been investigated. However, it is not easy to generate, maintain and measure the electron-positron plasma.

Fullerene C_{60} has a stable structure and it is a promising material for application.

e.g. Dust Plasma among Planets Electron–Positron Plasma

We tried to generate Pair-lon Plasma (C_{60}^+ - C_{60}^-) consisting of same mass ions using Fullerene.

Cross Section for C₆₀

ラングミュアプローブ特性

W-Wire Electron Gun

LaB₆ Electron Gun

接触電離(Qマシン)プラズマ

カリウムKの性質 第一イオン化ポテンシャル:4.3 eV

C₆₀の性質 第一イオン化ポテンシャル:7.6 eV 仕事関数:4.7 eV

C₆₀が固体を形成すると、C₆₀分子間 での相互作用が現れ、C₆₀固体として のエネルギーバンドを形成する。

ペアプラズマ中の波動

ペアプラズマ(電子ー陽電子プラズマ)は、正負荷電粒子の 質量が等しい。質量が等しいことに起因して、このプラズマが 時空間的な対称性を有する独特の媒体であると予測されるため、 宇宙プラズマや高エネルギー物理分野において広く興味が持た れてきた。また、実験室においてペアプラズマが実現できるよ うになったことも、多くの興味を集める一因となった。

プラズマの特徴の一つとして、多様な波動が存在することが 挙げられる。多くの研究がなされた通常の異質量から成るプ ラズマと、どのように波動特性が異なるのかが理論的に調べら れた。電子ー陽電子プラズマの波動特性を測定するのに十分な 密度と粒子ライフタイムを実現するのは容易ではない。波動特 性の実験的検証が遅れている。

我々のイオンから成るペアプラズマは生成・維持・測定が 容易である。そこでペアプラズマ中の波動特性を実験的検証を おこなった。

G. P. Zank and R. G. Greaves: Phys. Rev. E, 51 (1995) 6079

静電波動の励起方法

z (cm)

密度・温度が比較的低いため (10⁷ cm⁻³, 1 eV)、静電波は 励起しやすいが、電磁波を励起 しにくい。

Current methods of dimer formation are accompanied with stepwise procedures in solid- or solution-phase reactions using catalysts or nonallotropic fullerene derivatives.

 $C_{60} + KCN$ (CN) C_{60}^{-}

 C_{120}

We try to form directly fullerene dimers from fullerene molecules.

A grounded substrate is exposed to the plasma for 60 minutes at z = 70 cm.

The deposit on substrate in Pair-lon Plasma is evaluated by MALDI-TOF MS.

マトリックス支援によるレーザ脱離イオン化飛行時間型質量分析方法 (Matrix Assisted Laser Desorption/Ionization – Time of Flight Mass Spectrometry) MALDI-TOFによる質量スペクトル

ダイマーの形成条件

電子ビームがフラーレンにエネルギーを与えて、結合を促進させている

高周波電磁場による電子加熱・ダイマー形成が期待される

まとめ

