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A plasma expansion into vacuum and the resultant ion acceleration are studied analytically and
numerically. The expansion of an initially uniform spherical plasma �consisting of a nanocluster or
microdroplet� with radius Ru0 and electron density nu0 is driven by the explosion of hot electrons
having an initial temperature Te0. A self-similar solution describes the nonrelativistic expansion of
a finite plasma mass with a full account of charge separation effects. Such key features as the energy
spectrum, maximum ion energy, and energy transfer efficiency from the electrons to the ions are
given by simple analytic formulas as a function of the normalized droplet radius, �u=Ru0 /�D, where
�D=�Te0 /4�nu0e2 is the Debye length. The solution predicts that impurity ions doped
homogeneously in a droplet plasma are accelerated quasimonoenergetically by the electrostatic field
generated by the charge separation. The prediction is confirmed by N-body particle simulations. The
origin of the monoenergetic spectrum is attributed to the spherical geometry. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2965147�

I. INTRODUCTION

In the last decade, ion acceleration due to plasma expan-
sions into vacuum under intense laser irradiation has been
studied extensively.1–25 The energy spectrum and the maxi-
mum kinetic energy of the accelerated ions have been con-
troversial in many of these theoretical and experimental re-
sults. Energetic ions originating from the periphery of the
expanding plasma are crucially affected by the properties of
the electron sheath beyond the ion front. Much of the rel-
evant analytical work has been based on the quasineutral
assumption. Recently, a rigorous self-similar solution12 has
been found for nonquasineutral two-fluid systems composed
of electrons and ions, describing the free expansion of a fi-
nite plasma with a full account of charge separation effects.
However, the solution is mathematically applicable only to
limited cases. In the present paper we extend it to practical
problems by showing that it agrees with N-body particle
simulations conducted under general conditions. Figure 1
leads to such questions as: To what extent can the self-
similar solution predict the behavior of a plasma expansion
for a uniform nanocluster target, and how precisely can one
formulate the maximum ion energy and energy transfer from
the electrons to the ions. The initial condition is to be
achieved by application of an intense, ultrashort laser pulse
on a tiny droplet. Although the resultant heating process is an
important issue,6 its detailed analysis is outside of the scope
of the present work.

Generation of monoenergetic ions15–25 is another issue
relevant to laser plasma expansions, because it can lead to
medical and energy applications, such as, cancer therapy and
fast ignition in inertial confinement fusion, respectively. Ex-
cept in a few cases,20–23 most studies on the generation of

monoenergetic ions have been based on planar geometry.
Last and Jortner,20 for example, numerically showed that
Coulomb explosions composed of different species of ions
produce quasimonoenergetic ions. Meanwhile, Ter-Avetisyan
et al.21 reported experimental evidences for quasimonoener-
getic spectra of accelerated ions when using a water droplet.
In the present paper we demonstrate that such a quasimo-
noenergetic energy spectrum, which is observed in a droplet
plasma expansion doped with impurity ions, can be ex-
plained by using the simple self-similar solution. The origin
of the monoenergetic spectrum is concluded to result from
the spherical geometry.

The goal of the present paper is to address the dynamics
of a droplet plasma expansion with the help of particle simu-
lations and the self-similar solution, and to demonstrate the
generation of quasimonoenergetic ions due to the impurity
component. The structure of this paper is as follows. In Sec.
II we briefly review the self-similar solution by providing
some useful fitting formulae for the detailed numerical re-
sults and we propose a comprehensive physical picture un-
derlying the phenomena. In Sec. III we extend the self-
similar model to an initially uniform droplet plasma and
compare it with particle simulation results. In Sec. IV we
show that quasimonoenergetic spectra can be obtained for
impurity ions doped in a background plasma with a finite
mass. Section V is devoted to a summary.

II. ANALYTICAL MODEL

A. Self-similar solution

Suppose that at t=0 the electron component of a finite
plasma is rapidly heated to a uniform temperature Te0, and
that the subsequent plasma expansion is described by a non-
relativistic model of two charged fluids coupled via a self-
consistent electric field. It is assumed that the ions remaina�Electronic mail: murakami-m@ile.osaka-u.ac.jp.
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cold, whereas the electrons adopt a uniform temperature dis-
tribution Te�t� at each time. This one-dimensional hydrody-
namic system is described by26
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where �=1, 2, and 3 correspond, respectively, to planar, cy-
lindrical, and spherical geometries. Equation �1� combines
two continuity equations for the electron �subscript e� and
ion �subscript i� fluids. The Poisson equation �4� for the elec-
trostatic potential � is written in cgs units; e is the elemen-
tary charge and Z is a fixed ionization value.

To find a physically interesting self-similar solution to
Eqs. �1�–�4� under the nonquasineutral assumption ne�Zni,
we use the similarity ansatz30

vi�e��t,r� = Ṙ�, � =
r

R�t�
, Ṙ �

dR

dt
, �5�

ne�t,r� = ne0�R0

R
��

Ne���, Ne�0� = 1, �6�

Zni�t,r� = ne0�R0

R
��

Ni���, Ni�0� � 1, �7�

where ne0�ne�0,0�.
In the present system, there are two characteristic

scale lengths, the plasma size R�t� and the Debye length

�D�t�=�Te�t� /4�ne0e2. One can find a self-similar solution if
R�t� and �D�t� evolve coherently in time such that the ratio
between them is constant,

�s =
R

�D
=

R0

�D0
= R0�4�e2ne0

Te0
�1/2

, �8�

where R0�R�0�, �D0��D�0�, and Te0�Te�0�. It should be
noted that, within the framework of the self-similar solution,
the ion fluid is assumed to have a finite radial extension
0�r�� fR, i.e., a sharp edge at a fixed value � f of the
�Lagrangian� self-similar variable � �see Fig. 1�b��. Therefore

the functions for the ions, Ni and vi / Ṙ, are defined only
inside the interval 0���� f, while the electron fluid extends

to infinity so that the functions, �, Ne, and ve / Ṙ, are defined
for all 0���	. The region � f ���	, where ni=0, com-
prises the electron sheath.

Introducing the dimensionless potential,


��� = e�/Te, �9�

the present system of Eqs. �1�–�7� yields

Ne = exp �
 − �e�
2�, 0 � � � 	 , �10�

where �e=Zme /mi�1 is the electron-to-ion mass-over-
charge ratio. Here we explain the physical implication of the
small but crucial factor �e. With Eq. �10�, as might be
expected,26 for �e=0 we recover the familiar Boltzmann re-
lation, which is usually employed to close the system of ion
fluid Eqs. �1�, �2�, and �4� without solving them for the elec-
tron fluid. The reason why we cannot stay within this con-
ventional approach is as follows. When applying the Boltz-
mann relation ne�t ,r�=ne�t ,0�exp�e� /Te� to a dynamic
problem, one actually assumes that, at any time t, electrons
instantaneously relax to a thermodynamic equilibrium in a
given electrostatic potential �=��t ,r�. However, similar to
the case of the gravitational field,27 such an equilibrium, be-
ing possible in the planar geometry, does not exist for spheri-
cally symmetric finite charge distributions. This is caused by
the finite potential difference 
	
−	 between the plasma
center and infinity �see Fig. 2 below, for example�, which, by
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FIG. 1. Initial profiles for �a� the simulation and �b� the self-similar solution,
where Ru0, � f, and R�t� denote the initial droplet radius, the self-similar
coordinate at the ion front, and the characteristic scale in the self-similar
system, respectively. The density profiles for the ions and electrons are
found to asymptotically approach the self-similar profiles �b�.
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FIG. 2. Spatial profiles for the normalized ion Ni and electron Ne densities
together with the potential 
 and electric field E for �s=1.9 and �=3.
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virtue of Ne�	�=exp�
	�
0 �where 
	�
�	��, implies
that the global plasma neutrality can never be ensured with
�e=0. Consequently, if we choose �e=0 �i.e., apply the
usual Boltzmann relation�, we can solve our problem for
�=1 but not for �=3. The cylindrical case of �=2 is less
obvious but can be proven to fall in the same category as the
spherical one. To overcome this difficulty, we resort to a
fully dynamic treatment of the electron fluid with nonzero
electron mass ��e
0�, which leads us to Eq. �10�.

In the following, we employ the approximation,
1+�e	1. As a result, the profiles in the ion-fluid region
0���� f are given by


 = − �2, �11�

E = − d
/d� = 2� , �12�

Ne = exp �− �2� , �13�

Ni = exp �− �2� + 2��s
−2, �14�

where E in Eq. �12� denotes the normalized electric field.
The ion front � f and the physical profiles for �
� f is

obtained numerically as an eigenvalue problem.12 Figures 2
and 3 plot the results for �s=1.9 and �s=30, respectively,
where �=3 and �e

−1=2000 to approximate a proton. As can
be seen in Fig. 2, the ion density is rather uniform in space
with a strong charge separation. Meanwhile, in Fig. 3 with
�s=30, the ion density profile is closer to a Gaussian shape,
and the charge separation can only be observed in the vicin-
ity of the ion front. For both Fig. 2 and Fig. 3, the electric
field E linearly increases for 0���� f and asymptotically
vanishes as �→	. In contrast the potential 
 converges to a
finite value as �→	.

B. Energy spectrum and maximum ion energy

The simplest way to evaluate the ion energy spectrum by
free plasma expansion would be to ignore the effects of
charge separation and solve the appropriate hydrodynamical
problem in the quasineutral approximation. In our case, if a

spatially uniform electron temperature is assumed, a
quasineutral self-similar solution is obtained, giving a Gauss-
ian density profile, Ne���=Ni���=exp �−�2�, which extends to
infinity. It should be noted that, in the self-similar model,12

the geometry index � and the adiabatic index � cannot be
independent of each other, being related by �=2−2 /�; for
example, if �=3 �spherical�, then �=4 /3 is required for the
self-consistency of the system. Note that �=4 /3 is the adia-
batic index of the electron gas with Te�mec

2. However, one
may employ an approximation that relaxes this strict condi-
tion in order that the model can treat other combinations of �
and � as follows. The asymptotic �t→	� velocity distribu-
tion is given by vi�e��t ,��=v	�, where

v	 = lim
t→	

Ṙ = 
2cs0/���� − 1� , � 
 1,

2cs0
�ln�R/R0� , � = 1,

� �15�

is obtained by integrating RR̈=2cs0
2 ,12 corresponding to the

reduced temporal part of the ion momentum equation �2�,
with the sound speed cs0=�ZTe0 /mi and initial condition

Ṙ�0�=0. The first expression for �
1 in Eq. �15� applies to
a droplet target that is instantaneously heated to temperature
Te0 by an intense, ultrashort pulse and adiabatically expands
after that. On the other hand, if the system expands isother-
mally under long-pulse irradiation, the first expression in Eq.
�15� should be replaced by the second with �=1, where v	 in
this case is roughly estimated at a time when the laser irra-
diation ceases at R=R��p� with �p the laser pulse duration.
The isothermal temperature has the temporal dependence
Te�t��ne�t ,0��−1�R�t�−���−1�, where the mass conservation
law neR

�=constant is used. For spherical adiabatic expansion
with �=3 and �=5 /3, the system size R evolves as

R�t� /R0=�1+ �2cs0
2 /R0

2�t2 with Ṙ�0�=0 �see Eq. �33� in Ref.
10�, and thus Te�t��1 / t2 at long times, consistent with a
kinetic model.32–34

The most important output of the self-similar solution is
the maximum ion kinetic energy Ei,max for ions at the vacuum
boundary with �=� f in the form

Ei,max = E0� f
2, �16�

where E0= 1
2miv	

2 is the characteristic energy of an ion at t
→	 given the two contrasting cases,

E0 = 
2ZTe0/��� − 1� , � 
 1,

2ZTe0 ln�R��p�/R0� , � = 1.
� �17�

Again, the conditions �
1 and �=1 correspond to instanta-
neous heating ��p�R0 /cs0� and isothermal expansion due to
long laser irradiation ��p�R0 /cs0�, respectively. In the latter
case, the plasma expansion is considered to be adiabatic for
t
�p after switching off the laser.10 In spherical geometry,
the first expression in Eq. �17� yields a factor of 2 difference
between E0=ZTe0 �Refs. 33 and 34� at �=5 /3 and E0

=2ZTe0 at �=4 /3. Since the latter is mathematically self-
consistent in our self-similar solution, we keep E0=2ZTe0 as
a reference value when comparing numerical simulations
below.

-10

-5

0

5

10

10-5

10-4

10-3

10-2

10-1

100

101

0 1 2 3 4 5

Similarity coordinate �

Ne

Ni

�

E

µe
�1 = 2000

�s = 30

1

P
o
te
n
ti
a
l
�
,
E
le
c
tr
ic
fi
e
ld
E

N
o
rm

a
liz
e
d
d
e
n
s
it
ie
s

N
e
,
N
i

FIG. 3. Spatial profiles for the normalized ion Ni and electron Ne densities
together with the potential 
 and electric field E for �s=30 and �=3.
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In spherical geometry ��=3�, the asymptotic behavior of
� f with respect to �s is analytically derived12 in the limits
�s��e

−1/2 and �s��e
−1/2 as follows:

� f
2 = 
� fA

2 = W��1/3�s
4/3/2�e�/2, �s � �e

−1/2,

� fB
2 = W��s

2/2� , �s � �e
−1/2,

� �18�

where the critical value �s��e
−1/2 is obtained from the con-

dition � fA=� fB, and W�x� is the inverse of the function

x�W� = W exp �W� , �19�

and is called the Lambert W function.31 Asymptotically,
W�x��x for x�1 and W�x�� ln�x / ln x� for x�1. Note that
the second formula of Eq. �18� for �s��e

−1/2 applies not
only to �=3 but also to �=1 and 2. An approximate value of
� f for arbitrary �s is

� f � �� fA
6 + � fB

6 �1/6, 0 � �s � 	 . �20�

Figure 4 shows the normalized maximum ion energy
Ei,max /E0 as a function of �s. The solid curves denote the
numerical solutions for different values of �e, where �e

−1

=100 corresponds to a hypothetical light ion, while 2 000
and 40 000 approximately correspond to a proton and a so-
dium ion, respectively. The dashed curves plot the fitting
formula, Eq. �20�, and show good agreements with the nu-
merical results. In Fig. 4 the difference in the behavior of � f

for the two regimes �s��e
−1/2 and �s��e

−1/2 is attributed to
the following: For �s��e

−1/2, the electron sheath extending
beyond the ion front �� f becomes much thinner than the ion
sphere radius, i.e., �� f �� f, and therefore the geometry aris-
ing from the charge separation is almost planar. In contrast,
for �s��e

−1/2, the electron sheath becomes thicker than the
ion sphere, i.e., �� f 
� f, and the ions are subject to the self-
potential field caused by the whole sphere as in the case of a
Coulomb explosion. The geometrical effect is then spherical.

In Fig. 4 strong dependence of the curves on �e is ob-
served for �s��e

−1/2, in which the maximum ion energy

Ei,max seemingly increases with decreasing �e at a fixed value
of �s. However this might lead readers to misunderstand the
underlying physical picture such that the maximum ion en-
ergy of a Coulomb explosion, for example, would diverge to
infinity as �e→0. It is of course not the case, because the
electron density profile will be stretched with decreasing �e

�see Eq. �10��, and then the values of ne0 and thus �s are
correspondingly reduced �compare Eqs. �6� and �8�� under a
finite amount of plasma; quantitatively this can be rephrased
such that the three branch-off curves in Fig. 4 are just trans-
lation images with each other along the �s-axis by a factor of
�e

3/4 as can be confirmed with the first formula of Eq. �18�.
The somewhat confusing physical picture for �s��e

−1/2

mentioned above will be described in a simple manner in
Sec. III in terms of the actual ion sphere size Ru0 instead of
the electron density scale R0, or equivalently in terms of
another dimensionless parameter �u instead of �s. As a mat-
ter of fact, the seeming �e-effect disappear on the Ei,max

−�u plane �see Fig. 9 below�, and the branch-off curves for
�s��e

−1/2 coalesce into a single curve �also see Eqs. �29�
and �31� below�.

The second important output of the self-similar solution
is the energy spectrum of the ion kinetic energy. In view
of Eq. �5�, the distribution of ions Ni over their energy
Ei=E0�2 at t→	 is a simple image,

dNi

dEi
=

A

E0
� Ei

E0
��/2−1

�exp �− Ei/E0� + 2��s
−2�, 0 � Ei � Ei,max,

�21�

of the spatial distribution Ni��� applied to a finite energy
interval 0�Ei�Ei,max, where A= �2
0

�fNi�
�−1d��−1 is a con-

stant, with which the total number of Ni is normalized to
unity. Figure 5 shows the energy spectra ��=3�, Eq. �21�, to
demonstrate that its possible shapes range from a Coulomb-
explosion spectrum in the limit of �s→0, dNi /dEi��Ei /E0,
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to the ambipolar expansion type36 characterized by a Max-
wellian exponent in the limit of �s→	, dNi /dEi

��Ei /E0 exp�−Ei /E0�. The spectrum for planar ��=1�
mass-limited plasma has the form10 dNi /dEi

�exp�−Ei /E0� /�Ei /E0. The limit �s→	 corresponds to
quasineutral hydrodynamics, and our solution in this limit
does indeed approach the corresponding self-similar solution
of fluid dynamics. Good agreements in the energy spectrum
between the self-similar solution, Eq. �21�, and experiments
are found in Ref. 10 in the limit �s→	. One should note
however that our self-similar solution describes plasma ex-
pansion still in an approximate manner. In the opposite limit
of �s→0, when the ion density Ni�2� /�s

2�1 greatly ex-
ceeds the electron density Ne�1, our solution describes the
Coulomb explosion of a uniform bare ion sphere �or a cyl-
inder or a slab� that has suddenly been deprived of all its
electrons. A remarkable fact is that, as �s→0, the modeled
profiles for the velocity and the electric field are not only
asymptotic for t→	, but exact for all t�0 in the particular
case of a uniform initial density profile. It should be also
noted that otherwise such characteristics of a Coulomb ex-
plosion as the energy spectrum, the temporal ion density, and
the maximum ion energy depend on the initial density
profile.35

III. APPLICATION OF THE SOLUTION
TO NANOCLUSTER EXPLOSIONS

A. N-body particle simulation

Now consider a more practical case, where a droplet �or
nanocluster� plasma with initial radius Ru0 has uniform den-
sity profiles for both the ions and the electrons �Zni=ne

=nu0� as shown in Fig. 1�a�. This uniform profile decays as
the plasma expands into vacuum. As a result, the profiles are
expected to asymptotically approach those of the self-similar
solution. In the following simulation, the ions are assumed
to be cold at t=0, while the electrons are heated uniformly
to a temperature Te0 with a Maxwellian distribution. In
Sec. II, we saw that the self-similar dynamics of the ex-
panding plasma are uniquely characterized by the external
parameter �s. What is the corresponding value of �s

=�s�Ru0 ,nu0 ,Te0� describing a droplet plasma expansion in
terms of the self-similar solution? We first find the paramet-
ric relation between a droplet plasma and the self-similar
plasma. We then predict the maximum ion energy and the
electron-to-ion energy transfer efficiency of a droplet plasma.

These analytical predictions are next tested by N-body
charged particle simulations,28,29 in which all the particle-to-
particle Coulomb forces are computed exactly including a
core-exclusion treatment to avoid numerical divergences.29

The N-body simulation is the most suitable numerical ap-
proach to treat the parametric domain �s��e

−1/2 �corre-
sponding to a Coulomb explosion�. In this domain, the
plasma scale becomes less than or equal to the Debye length.
In other words, each pair of ions in the ion sphere are influ-
enced by their Coulomb potential, and a general particle-in-
cell �PIC� simulation is inapplicable. Furthermore the
N-body simulation will describe the dynamics of a system
when its size and the ratio of the Coulomb energy to the

kinetic energy drastically changes in time. Note that
�e

−1=100 is employed in the present simulation to save CPU
time and that Z=1 is used for simplicity. We have adopted
the relativistic version of the Newton equations of motion,
similar to the nonrelativistic molecular dynamics simulations
used for studying microwave heating of �salty� water and
ice.29 The electrostatic and Lennard-Jones forces are calcu-
lated for pairs of atoms. The equations of motion are

dpi

dt
= − �
�

j

qiqj

rij
+ 48�ij�� �

rij
�12

− � �

rij
�6�� , �22�

dri

dt
= vi, pi = mi0vi/�1 − �vi/c�2, �23�

where ri, vi, and pi are the position, velocity, and momentum
of the ith atom, respectively; mi0 and qi are its rest mass and
charge, respectively, and rij = �ri−r j� is the distance between
the ith and jth atoms. The second term in the square bracket
of the first equation serves to avoid the divergence in the
Coulomb force �rij→0� by prohibiting overlap of the atoms,
where � is the sum of the radii of the two atoms and �ij is the
Lennard-Jones energy. The Lennard-Jones potential is trun-
cated at 21/6� to limit its influence at short ranges. The ion
and an electron radii are �i=0.13 nm and �e=0.029 nm, re-
spectively. The time step for integration is 0.0165 fs. In the
following simulations, the total number of electrons is fixed
at NT	4200, which is the number of electrons number con-
tained in an actual hydrogen cluster for �ne0=1021 cm−3,
Ru0=10 nm� or �ne0=1023 cm−3, Ru0=2.15 nm�. Figure 6
shows a resulting N-body particle simulation as a series of
snapshots of the particle positions in an exploding nanoclus-
ter composed of 4162 electrons with charge q=−e and mass
m=me, 3562 background ions with q= +e and m=100me,
and 150 impurity ions with q= +4e and m=100me. The other
parameters are Ru0=2.15 nm, nu0=1023 cm−3, and Te0

=4500 eV. The left and right columns in Fig. 6 correspond to
the electrons and the two-species ions, respectively. After the
charge separation is built up due to the outburst of the elec-
trons, the ions are accelerated outward by the strong sheath
electrostatic field, resulting from the charge separation. The
purpose of homogeneous doping of the impurity ions is to
generate a quasimonoenergetic ion spectrum. In this case, the
impurity ions are indeed accelerated quasimonoenergetically
at around four times the maximum background ion energy, as
will be discussed in more detail in Sec. IV.

How many particles are necessary to obtain a physically
meaningful result with the N-body simulation? This question
can be rephrased in the context of our problem as: What is
the applicable range of �u and �s? Note that �u��s for
�s��e

−1/2 �see Fig. 7�. We argue this problem in terms of
the fraction of ions accelerated to maximum energies Ei

	Ei,max, given in the form �Ni,f �Ei,max�dNi /dEi�Ei=Ei,max

=2� f
�+2 /��� /2��s

2.12 A fitted formula, �Ni,f ��0.1�s�−1.5, is
numerically obtained for 30��s�3000 when �=3. If the
number of accelerated ions contained in the highest energy
group is required to be more than 10, this condition is given
by NT�Ni,f 
10. The criteria is then reduced to NT


0.3�s
1.5 using the above fitting formula. Thus the present
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N-body simulation with NT	4200 is expected to give us
physically meaningful results for plasma expansions with
�s�O�102–103�. This contrasts with PIC simulations,
which is generally applicable for �s
O�10–102�.

B. Parametric relation between the solution
and nanoclusters

In the following, we mainly focus consideration on a
spherical geometry ��=3�. We introduce two dimensionless
parameters to characterize an initially uniform droplet
plasma: The plasma size �u �compare Eq. �8�� and the ion
front position �u,

�u = Ru0�4�e2nu0

Te0
�1/2

, �u =
Ru0

R0
. �24�

Note the difference between Ru0 and R0=R�0�, where R�t� is
the temporal scale length defining the Maxwellian density

profile of the self-similar solution, Eqs. �5� and �13�. We
assume here that the electrons in the uniform plasma
�Zni=ne=nu0� at t=0 are allowed to suddenly expand and
that as a result they are quickly redistributed according to the
spatial profile of the self-similar solution with Zni�ne=ne0

at r= t=0. Then the initial electron density ratio at the center,
nu0 /ne0, is given by Eqs. �13� and �14� as

nu0

ne0
= � Ni

Ne
�

�=0
= 1 +

6

�s
2 . �25�

With the help of Eqs. �8�, �13�, �14�, �24�, and �25�, �u and
�u are related to �s in the form

�u = �u
��s

2 + 6. �26�

As already mentioned, the density profiles are deformed
from the initial ones in Fig. 1�a� to approach those in Fig.
1�b� and the ion energy spectrum becomes comparable to the

FIG. 6. �Color� Temporal evolution of the particle po-
sitions obtained by N-body simulation; the exploding
nanocluster is composed of background ions �Z=1, blue
dots� and impurity ions �Z=4, yellow dots� with the
same mass ratio mi=mp=100me. Other parameters are
Ru0=2.15 nm, nu0=1023 cm−3, Te0=4500 eV. The
charge separation is established after the outburst of the
electrons in �b�. The ions are set into radial acceleration
being driven by the strong sheath electrostatic field.
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self-similar prediction of Eq. �21�, as will be confirmed by
the simulation results. Using Eqs. �8�, �13�, �14�, �24�, and
�25�, the ion mass conservation relation between the self-
similar plasma and the droplet plasma reads

�
0

�f

4��2�exp �− �2� + 6�s
−2�d� =

4

3
��u

3�1 + 6�s
−2� . �27�

Equations �26� and �27� give �s and �u as a function of �u in
terms of the initial parameters Ru0, Te0, and nu0. In particular,
Eq. �27� gives an analytical expression for �u in the two
limiting regions, �s��e

−1/2 and �s��e
−1/2,

�u = 
� f , �s � �e
−1/2,

�3��/4�1/3, �s � �e
−1/2.

� �28�

Figure 7 shows �s plotted against �u for the three different
values, �e

−1=100, 2 000, and 40 000. The physical reasons
for the bifurcation and the strong dependence on �e for �s

��e
−1/2 is the same as that given for Fig. 4. In contrast, for

�s��e
−1/2, one obtains from Eqs. �26� and �28� the propor-

tionality �s�0.91�u regardless of the value of �e, which is
depicted as the dotted line in Fig. 7.

C. Energy spectrum and maximum ion energy

Figure 8 compares the ion energy spectra comparing for
the self-similar solution and the simulations. The fixed pa-
rameters are Z=1, nu0=1023 cm−3, and Ru0=2.15 nm, while
the initial temperature is varied over the range Te0

=4.5–4500 eV, with corresponding values of �u=1.4–43.
The vertical positions of the simulation data and the model
curves were adjusted to best fit each other. Meanwhile the
ion kinetic energy on the horizontal axis is normalized by
E0=2ZTe0 for both the self-similar model and the simula-
tions. As a whole, the simulation results agree well with the
model. The differences between them, particularly at higher
energies, can be attributed to those of the initial profiles �see
Fig. 1� and to thermodynamics. Regarding the latter, in the

expanding periphery the plasma cannot actually remain iso-
thermal �as is assumed in the self-similar analysis�, because
the number of electron-electron collisions declines. That re-
duces the energy supply from the central region, resulting in
weaker electric field and thus in decreased acceleration of the
periphery ions at high energies.

The maximum ion kinetic energy Ei,max /E0 is a function
of only �u. Figure 9 compares Ei,max /E0 for the self-similar
model and the simulation results. Using Eqs. �16�, �26�, and
�28�, Ei,max /E0 is analytically given in the two limiting re-
gions, �u�10 and �u�10, as
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Ei,max

E0
= 
�u

2/6, �u � 10,

W��2/9��1/3�u
2� , �u � 10,

� �29�

which are depicted in Fig. 9 by the short- and long-dashed
lines. The strong dependence of Ei,max��s ,�e� on �e for �s

��e
−1/2 observed in Fig. 4 disappears in the expression in Eq.

�29�. Note that no appreciable difference in the ion energy
spectrum and the maximum ion energy can be found from a
few test simulations when employing �e=400 instead of
�e=100 for �u�1, 10, and 100. The two asymptotic ana-
lytical curves in Eq. �29� are combined to yield a fitting
curve that applies to the whole domain, 0��u�	, as de-
picted by the solid curve in Fig. 9,

Ei,max

E0
� � 1

��u
2/6�2 +

1

�W��2/9��1/3�u
2��2�−1/2

, 0 � �u � 	 .

�30�

Recalling E0=2ZTe0 for the instantaneous heating case and
the definition of �u �see Eq. �24��, the absolute value of
Ei,max is explicitly given by

Ei,max = 
�4�/3�nu0Ze2Ru0
2 , �u � 10,

2ZTe0W��2/9��1/3�u
2� , �u � 10.

� �31�

The first expression for �u�10 reproduces the maximum
energy of the Coulomb explosion of a uniform bare ion
sphere, and Ei,max does not depend on the electron tempera-
ture Te0 in this limit.

It is interesting to compare our results with those of
Peano et al.14 They also studied the same problem, namely,
expansion of spherical plasmas composed of cold ions
and hot electrons, using a novel kinetic model tested by
PIC simulations. They proposed simple fitting formulae
for their numerical results for the maximum ion kinetic

energy in the form Ei,max /2ZTe0= ��u
2 /6�F1.43�2.28T̂0

3/4�
= ��u

2 /6�F1.43�2.28·33/4�u
−3/2� with Fk�x��x / �1+xk�1/k and

T̂0�3�D
2 /R0

2=3�u
−2 �compare Eq. �24� of the present paper

and Eq. �5� in Ref. 14�. The dashed curve in Fig. 9 represents
this fitting formula. Our results are in excellent accord with
it.

D. Electron-to-ion energy transfer efficiency

Next we evaluate another important quantity, the fraction
of the initial thermal energy of the electrons that is converted
into kinetic energy of the ions at t→	. Here we briefly dem-
onstrate the energy accounting obtained from a numerical
simulation of a nanocluster plasma expansion: Figure 10
shows the temporal behavior of the kinetic energy of the ions
Ei, the kinetic energy of the electrons Ee, and the Coulomb
potential energy EC for the fixed parameters Z=1, nu0

=1023 cm−3, Ru0=2.15 nm, and Te0=1400 eV. Note that Ee

is composed of the thermal energy and the radial transla-
tional kinetic energy; the former dominates Ee in the limit
t→0 when T=Te0, while the latter dominates in the limit
t→	 when T=0. As is expected, substantial energy transfer
occurs on a hydrodynamic time scale of Ru0 /cs0�6 fs. As
can be seen in Fig. 10, the electron energy is first converted
into Coulomb potential energy to form the electron sheath,

and then the Coulomb energy is transferred to the ion kinetic
energy, resulting in ion acceleration. In Fig. 10, the trans-
ferred energy from the electrons to the ions amounts to 35%
at t→	.

The self-similar model explicitly determines this transfer
efficiency �t as follows. The kinetic energy of the ions,
Eki=
 1

2minivi
2dV �dV=4�r2dr�, is calculated with the help of

Eqs. �5�–�14� in the form

Eki�t�
E0

=
1

3

1 − � R0

R�t��3��−1���
0

�f

�4�exp �− �2� + 6�s
−2�d� ,

�32�

where E0=8�R0
3ne0Te0 / ��−1�. The thermal energy of the

electrons, Ete= ��−1�−1
neTedV= ��−1�−1Te
ZnidV �
nedV
=
ZnidV is used�, is

Ete�t�
E0

=
1

2
� R0

R�t��3��−1��
0

�f

�2�exp �− �2� + 6�s
−2�d� . �33�

Consequently the transfer efficiency is

�t =
Eki�	�
Ete�0�

=
2
0

�f�4�exp �− �2� + 6�s
−2�d�

3
0
�f�2�exp �− �2� + 6�s

−2�d�
, �34�

where � f
2=W��s

2 /2� and Eqs. �26� and �27� were used to
obtain � f and �s as a function of �u. It should be noted that
�t is not influenced by the adiabatic index �, as can be seen
in Eq. �34�. Figure 11 plots �t versus �u comparing the self-
similar model �solid curve� of Eq. �34� with the simulation
results. It is found that �t dramatically changes in the region
1��u�10. Our results for �t agree with the fitting formula
of Peano et al.,14 graphed as the dashed curve in Fig. 11,
where their fitting formula is given in a slightly modified

form as �t=1−F3.35�1.86�u
−1�, by redefining T̂0��u

−2 in-

stead of T̂0�3�u
−2 �compare to Eq. �3� in Ref. 14�.
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E. Charge separation factor

The charge separation factor ��
�Ni−Ne�dV /
NidV
�for the ion sphere�, showing the extent to which electrons
are “expelled” from the ion sphere, is also plotted in Fig. 11.
With the help of Eqs. �13� and �14�, � is computed by

� = 2� f
3��s

2�
0

�f

�2�exp �− �2� + 6�s
−2�d��−1

, �35�

where � f and �s are functions of �u in the same manner as
for �t. In Fig. 11, the value of � obtained by our self-similar
model is in good agreement with the fitting formula in

Ref. 14, �=F2.60��6 /exp�1�T̂0
1/2�=F2.60��18 /exp�1��u

−1�
with T̂0�3�u

−2 �see Eq. �2� in Ref. 14�.
Figures 9 and 11 imply that our self-similar solution is a

simple and robust analytical tool having good consistency
with other kinetic approaches. Moreover, the results for the
maximum ion energy Ei,max and the energy transfer efficiency
�t suggest the following from an engineering point of view.
When one wants to optimize the performance of a droplet
plasma expansion in terms of Ei,max and �t, the dimensionless
parameter �u should be chosen so that �u�O�1�. This result
could aid in the design of neutron sources using explosions
of nanoparticles or atomic clusters,37 for example.

IV. GENERATION OF QUASIMONOENERGETIC
SPECTRUM

In our previous paper,12 we discussed the test ion prob-
lem, where say protons are distributed on the surface of a
high-Z spherical plasma and their resultant accelerations are
calculated. In this section, we consider another extended
problem, where impurity ions are distributed inside the
plasma homogeneously. Here we use the term “impurity
ions” instead of “test ions.” If the impurity ions are substan-

tially fewer in number than the background ions, the influ-
ence of the impurity ions on the electric field is expected to
be negligibly small. In that case, the acceleration of the im-
purity ions can be deduced from the self-similar solution. We
calculate the energy spectra of the impurity ions resulting
from the plasma expansion into vacuum after the instanta-
neous heating.

Suppose that an impurity ion with mass mp and electric
charge +Zpe is initially at an arbitrary point in the bulk
plasma described by our self-similar solution. As time
elapses, its position rp�t� and velocity vp�t� increases. One
can introduce the self-similar system size R�t� as the inde-
pendent parameter instead of time t, i.e., rp=rp�R� and vp

=vp�R�. Then the nonrelativistic dynamics of the impurity
ion are governed by12

drp

dR
=

vp

2cs0
�1 − R0/R

, �36�

dvp

dR
= −

�cs0R0

2R2�1 − R0/R
d
��p�

d�
, �37�

where �p�R�=rp�R� /R, and

� =
Zp/mp

Z/mi
�38�

is a dimensionless parameter characterizing the charge-over-
mass ratio of the impurity ion. Equations �36� and �37� are
numerically integrated for R�t��R0 with initial conditions,
vp�R0�=0 and rp�R0�=rp0, where rp0 is the initial position of
the impurity ion satisfying �p0=rp0 /R0�� f.

The final velocity, vp	=vp�	�, of the impurity ion is a
function of � and �p0. Figure 12 plots the final velocity vp	

normalized by the maximum ion velocity of the background
ions v f	 for different initial positions, �p0 /� f, as a function of
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the self-similar plasma size �s, where �=4 and �e
−1

=40 000 are fixed. According to Eq. �5�, the velocity ratio
equals the ratio of the self-similar coordinate � for an impu-
rity ion and a background ion, i.e., vp	 /v f	=�p	 /� f	. One
might have expected impurity ions on the plasma surface
with �p0 /� f =1 to attain the highest velocity, because they
“feel” the highest electric field according to Figs. 2 and 3.
However this conjecture is wrong, because all the impurity
ions travel through the background ions and consequently
increase their Lagrangian coordinates �p�t�. What matters is
the integrated work done by the electrostatic field on an ion

ZeE�r , t�dr. As can be seen from Fig. 12, the highest value
of vp	 /v f	 is obtained for �p0 /� f �0.6 if �=4 and �s�100.

Figure 13 shows vp	 /v f	 as a function of �p0 /� f with
different values of � between 1 and 16, where �s=10−2 and
�e

−1=40 000. The case of �=1 corresponds to the back-
ground ions themselves, and therefore the line for �=1
yields vp	 /v f	=�p	 /� f =�p0 /� f. Also, an impurity ion located
at the center keeps its position at all times. Furthermore
vp	 /v f	→�� as �p0 /� f →1 for �s��e

−1/2 �compare Fig. 12�,
because the ion acceleration is close to that for Coulomb
explosions in the limit �s→0, where the maximum ion en-
ergy balances the initial Coulomb potential energy, i.e.,
1
2mpvp	

2 =Q0Zpe /Ru0 and thus vp	��Zp /mp, where Q0 is the
total ion sphere charge. A crucial implication in Fig. 13 is
that a peak value of vp	 /v f	 is achieved by specific impurity
ions with their initial position �p0=�p0,max, and that the
curves of vp	 /v f	 level off as can be seen in Fig. 13, becom-
ing quasimonoenergetic. The flat shape is attributed to the
finite-mass plasma in a spherical geometry. In the limits
�→	 and �u→0, the achievable maximum kinetic energy
of an impurity ion with its initial position �p0 is given in the
simple form

Ep,max =
3 − ��p0/� f�2

2

Q0Zpe

Ru0
. �39�

This relation is further reduced by comparing Ep,max with
Ei,max to give

Zp

Z
�

Ep,max

Ei,max
�

3Zp

2Z
, �40�

namely, the ratio of the maximum kinetic energies does not
explicitly depend on � but is a function of only the ratio of
the ion charges.

The quasimonoenergetic feature can be more easily ob-
served when the curves in Fig. 13 are transformed into en-
ergy spectra dNi /dEi. Figure 14 shows energy spectra for the
background ions �Z=1� and for the impurity ions �Zp=2, 4,
and 8� comparing the self-similar model �plotted as the
curves� and the simulation �the circles�. Fixed parameters for
the simulation are nu0=1023 cm−3, Ru0=2.15 nm, Te0

=4500 eV, and Zp=4. The ion masses are fixed to be mi

=mp=100me. The N-body simulation for this set of param-
eters was graphed in Fig. 7. These parameters correspond to
�u=1.36 and thus Ei,max /E0=0.26 for the background ions
from Eq. �30�. Then, as mentioned earlier, the energy spec-
trum of the background ions is close to dNi /dEi��Ei /E0 as
in the Coulomb explosion of a uniform bare ion sphere. The
number of impurity ions is only 150 �compared with 3600
for the background ions� in order to not degrade the self-
consistent electric field. The vertical axis is in arbitrary units,
so that the impurity ion spectra can be compared to the back-
ground ion spectra. Overall, the model prediction and the
simulation results differ by a factor of about 1.5 along the
horizontal axis. This discrepancy arises partly because the
background electric field is not the same as the one predicted

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

F
in
a
l
v
e
lo
c
it
y
ra
ti
o

v
p
�

/
v
f�

Normalized initial position �
�	
��
�

2

1

4

� = 16

8

�s = 10
�2
, � = 3, µe

�1 = 40000

FIG. 13. Final velocity ratio vp	 /v f	�=�p	 /� f� vs normalized initial position
of impurity ion �p0 /� f for different values of the charge-over-mass ratio �.

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10

E
n
e
rg
y
s
p
e
c
tr
y
m

d
N

i/
d
E
i
(a
rb
.
u
n
it
)

Normalized ion kinetic energy E
�
�2ZT

e0

Background ions

4 8

Impurity ions

� = 2

� =1

FIG. 14. �Color� Ion energy spectra for the background ions and the impu-
rity ions comparing the self-similar model �curves� and the simulation �solid
circles�. Parameters for the simulation are nu0=1023 cm−3, Ru0=2.15 nm,
Te0=4500 eV, and �=4. �For two-dimensional plots, see Fig. 7.� The solid
and dashed curves for the impurity ion spectra reveal the spatial origin of the
ion emission corresponding to the outer region and the inner region of the
ion sphere, respectively.
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by the self-similar solution due to the existence of the impu-
rity ions. Nevertheless, a quasimonoenergetic spectrum is
observed in the simulation with the expected energy en-
hancement, i.e., Ep,max /Ei,max	Zp /Z=4. The solid and
dashed lines for the impurity ion spectra reveal the spatial
origin of the ion emission. The dashed curves for the impu-
rity ions correspond to their initial values for �p0��p0,max.
Meanwhile the solid curves correspond to their initial values
for �p0,max��p0�� f. The discrepancy between the self-
similar model and a real system in the temporal evolution of
the electric field is expected to become more substantial with
a larger value of �u, particularly at early times t�Ru0 /cs0.
Recently another interesting idea has been proposed by Ku-
mar and Pukhov.23 They modified the analysis for the self-
similar solution of Ref. 10 and introduced a new ingredient,
namely, tailoring of laser pulses, to demonstrate the genera-
tion of quasimonoenergetic ion spectra.

V. SUMMARY

Nanocluster plasma expansion and the resultant ion ac-
celeration have been studied both analytically and numeri-
cally. Key physical quantities such as the maximum kinetic
energy Ei,max, the energy spectrum dNi /dEi, and the electron-
to-ion energy transfer efficiency �t have been expressed in
simple formulae as a function of the dimensionless param-
eter �u=�u�Te0 ,Ru0 ,nu0�. As a compromise between values
of �t and Ei,max for the nanocluster explosions, �u must be
chosen to be of order unity.

We have generated quasimonoenergetic spectra using
impurity ions that are homogeneously doped in a spherical
pellet. The good agreements between the two quite different
approaches, namely, the fluid description �our self-similar so-
lution� and the kinetic descriptions �our N-body simulation
and the work by Peano et al.�, have revealed the underlying
physical picture of the plasma expansion and the generation
of the quasimonoenergetic spectrum. In a spherical system,
an impurity ion undergoes an increasing and decreasing elec-
tric field inside and outside the ion sphere, respectively �Figs.
2 and 3�. The final velocity profile of the impurity ions turns
out to be rather flat with respect to their initial positions �p0

�Fig. 13�. This acceleration mechanism and the resultant
quasimonoenergetic spectrum are concluded to be peculiar to
a spherical system.
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