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Abstract. We have performed molecular-dynamics simulations to study the effect of an external electric
field on a macroion in the solution of multivalent Z : 1 salt. To obtain plausible hydrodynamics of the
medium, we explicitly make the simulation of many neutral particles along with ions. In a weak electric field,
the macroion drifts together with the strongly adsorbed multivalent counterions along the electric field,
in the direction proving inversion of the charge sign. The reversed mobility of the macroion is insensitive
to the external field, and increases with salt ionic strength. The reversed mobility takes a maximal value
at intermediate counterion valence. The motion of the macroion complex does not induce any flow of the
neutral solvent away from the macroion, which reveals screening of hydrodynamic interactions at short
distances in electrolyte solutions. A very large electric field, comparable to the macroion unscreened field,
disrupts charge inversion by stripping the adsorbed counterions off the macroion.

PACS. 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling – 82.45.-h Electrochem-
istry and electrophoresis – 82.20.Wt Computational modeling; simulation

1 Introduction

The concept of electrostatic screening has been well known
since the work by Debye and Hückel of early 20th century
[1]. In recent years, screening by strongly charged ions
was found to result in counterintuitive phenomena such as
attraction between like-charged macroions [2–5], and in-
version of macroion charges [6–25]. Charge inversion was
studied by experiments using both colloids and biologi-
cal materials [6–14], by analytical theories [16,18–21,24,
25], and by Monte Carlo and molecular-dynamics (MD)
simulations [15,17,22,23].

Experimentally, the most direct method to observe
charged colloids and macroions is electrophoresis. This
method is also the prime candidate for the technique of
observing charge inversion. Although straightforward, this
approach involves many questions upon a closer look. For
example, does the macroion drift along with its adsorbed
multivalent ions when an external electric field is applied?
How many multivalent ions are attached to the macroion
strongly enough to drift together? How is the drift affected
by the solvent viscosity and the counterflow of monovalent
ions? What happens when the field becomes very strong?
What is the field strength sufficient to disrupt the charged
complex? These are the fundamental questions necessary
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to address in order to bridge theoretical concepts of charge
inversion and experimental observations.

It should be born in mind that electrophoresis in gen-
eral has quite a few delicate aspects. Some peculiar ones
attracted significant attentions recently [26] (see also the
review article [27] and references therein). The electric
field acts not only on the macroions, but on every ion in a
solution. In many cases, this leads to effective screening of
hydrodynamic interactions which otherwise may be very
significant. In the simulations reported below, we have
actually observed such short-range screening of hydrody-
namic interactions in the system comprising of a macroion,
counterions and coions (Sect. 3.2.1).

One of the difficulties in simulating charge inversion
under electrophoresis consists in subtle interactions of a
macroion with surrounding ions and neutral solvent. A
naive use of the Langevin equation, assuming that ev-
ery ion (radius R) in the system is subject to Stokesian
friction −6πηRv and white-noise random forces that bal-
ance the friction through the fluctuation-dissipation theo-
rem, is not justifiable. A simple counterexample would be
two closely located spheres. Since other particles (either
ions or neutral solvent) are excluded from the volume be-
tween spheres, neither their corresponding friction forces
nor random forces add to each other. One way of going
around this problem is to incorporate macroion-solvent
interactions using the Oseen tensor [28]. This is, however,
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not easy to implement in numerical simulations, because
the interactions produce complicated spatial correlations
among random forces. Therefore, we address this problem
by a direct approach introducing explicit neutral particles
to deal with the macroion-salt-solvent interactions in the
molecular-dynamics simulations.

The explicit simulation of the solvent molecules is of
course costly. In this paper, with the limited computa-
tional resources, we restrict ourselves to the system with
only the Z : 1 salt, and no 1 : 1 salt. It is needless to say
that in real water solvent there is always some amount of
1 : 1 salt. In this sense, our present paper demonstrates
the principle that charge inversion is a phenomenon ob-
servable by a direct electrophoresis experiment. Further
study including the 1 : 1 salt will be required to compare
results with realistic systems. Here, we will specify the de-
viations arising from the lack of the 1 : 1 salt. Also, we
will confine ourselves to the study of a single macroion
interacting with surrounding salt ions and solvent.

Our plan in this study is to examine electrophoresis
of a spherically shaped, uniformly charged macroion. We
will systematically measure the mobility of the drifting
macroion complex placed under an external electric field
by molecular-dynamics simulations. We first show that
charge inversion does take place in a solution containing
multivalent counterions, as manifested by the inverse mo-
bility under the weak electric field. We then look at the
dependences of the reversed mobility on the parameters,
such as the concentration of co- and counterions and the
surface charge density of the macroion. Finally, we con-
sider the strong electric-field regime and show that the
strong field disrupts the charge-inverted macroion com-
plex and terminates the charge inversion phenomenon.

2 Simulation model and parameters

2.1 Description of the model

We adopt the following model, with a, e, and m being the
units of length, charge and mass, respectively. (We have in
mind a ∼ 2 Å and m ∼ 40 a.m.u.) A macroion with neg-
ative charge Q0 between −15e and −180e is surrounded
by N+ counterions of a positive charge Ze and N− ≈ 300
coions of a negative charge −e. The system is maintained
in overall charge neutrality, Q0 +N+Ze−N−e = 0, which
determines N+ for a given Z. The mass of the macroion is
M = 200m, and the mass of the co- and counterions is m.
We also include N∗ neutral particles with mass m/2, where
we note the mass of water molecule against that of K+ or
Ca2+ ions. Approximately one neutral particle is located
in every volume element (1.5a)3 ≈ (3 Å)3 inside the simu-
lation domain, excluding the locations already occupied by
the macroion and other ions, which typically yields 8000
neutral particles. These particles are confined in a rect-
angular box of size L, with periodic boundary conditions
in all three directions. Most of the runs are performed for
L = 32a, except one series of the runs intended to test
the finite-size effect of the domain (Fig. 4) described in
Section 3.2.1.

In addition to the Coulomb forces, all particles inter-
act through the repulsive Lennard-Jones potential φLJ =
4ε[(σ/rij)12 − (σ/rij)6] for rij = |ri − rj | ≤ 21/6σ, and
φLJ = −ε otherwise. Here, ri is the position vector of
the i-th particle, and σ is the sum of the radii of two in-
teracting particles, which are chosen as follows: radius of
the macroion, R0, is between 3a and 7a, counterions and
coions have radius a, and neutral particles a/2. We relate
ε with the temperature by ε = kBT , and choose kBT =
e2/5εa (we assume spatially homogeneous dielectric con-
stant ε). The Bjerrum length is thus λB = e2/εkBT = 5a.
For the parameters of this temperature, the valence Z = 3,
and the number of coions N− = 300, the ionic strength
becomes nI = (Z2N+ + N−)/L3 ∼ 3.7 × 10−2a−3.

After knowing the ionic strength, one is tempted to
compute the Debye length which turns out to be λD ∼
0.45a. We should emphasize that this number does not
have much meaning for the system under study, because
we work in the domain very far from applicability of the
standard Debye-Hückel theory. In particular, the average
number of ions in the volume λ3

D turns out smaller than
unity. This is by no means surprising, because there is no
charge inversion in the Debye-Hückel theory, and to ex-
amine charge inversion we need to go to the regime where
this theory fails.

Since we do not have the 1 : 1 salt in our simulation,
we should keep in mind that correlations between strongly
charged Z-ions may be significant even away from the
macroion. Indeed, in the theory of charge inversion [19],
the role of correlations is emphasized for the Z-ions in
the vicinity of the macroion, where their concentration is
particularly large. In our system, the concentration of the
Z-ions is not very small even in the bulk, and we face the
situations in which correlations between the Z-ions away
from the macroion affect our results. For such cases, we
make additional runs with the reduced concentration in
the Z : 1 salt. However, we do not use this reduced con-
centration for all the runs, because such system is more
prone to noises and fluctuations, requiring larger statistics
to obtain reliable results.

Calculation of the Coulomb forces under the periodic
boundary conditions involves the charge sum in the first
Brillouin zone and their infinite mirror images (the Ewald
sum [29]). The sum is calculated with the use of the PPPM
algorithm [30,31]. We use (32)3 spatial meshes for the
calculation of the reciprocal space contributions to the
Coulomb forces, with the Ewald parameter α ≈ 0.262 and
the real-space cutoff rcut = Ri + 10a, where Ri is the ra-
dius of the i-th ion. A uniform electric field E is applied
in the x-direction.

When starting the molecular-dynamics simulation run,
we prepare an initial state by randomly positioning all the
ions and neutral particles in the simulation domain and
giving Maxwell-distributed random velocities correspond-
ing to the temperature Tinitial. We integrate the Newton
equations of motion with the use of the leapfrog method
[32], which is equivalent to the Verlet algorithm. In the ab-
sence of the electric field (E = 0), our system is closed, and
its energy is conserved. After an initial transient phase,
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the distribution of velocities relaxes to a Maxwellian, cor-
responding to an equilibrium sampling of the microcanon-
ical ensemble. This new Maxwell distribution has the tem-
perature T , which is a little higher than Tinitial, because
of the release of the potential energy due to screening,
i.e., local balancing of charges. We adjust Tinitial such that
kBT = ε. This makes ε to be the unique relevant scale of
energy, and, accordingly, we put τ = a

√
m/ε as the unit

of time. We choose ∆t = 0.01τ as the integration time
step. The simulation runs are executed up to 1000τ .

2.2 Hydrodynamic interactions, their screening, and
the temperature control

When an external electric field is present, it performs work
on the system. The corresponding energy, which is the
Joule heat, is transferred to background neutral particles
through collisions with accelerated ions. In our work, we
simulate an electrophoretic bath that is kept at a constant
temperature T . For this purpose, we pretend that all neu-
tral particles go through the thermal bath of infinite heat
capacitance, whenever they cross the boundaries of the
simulation domain (at the center of which the macroion is
located at every moment). Operationally, we refresh the
velocities of the neutral particles according to the thermal
distribution when they cross the domain boundaries. This
procedure maintains temperature stably to within 5%.

Two closely related factors are potentially dangerous
as they might affect the molecular-dynamics simulation
results. One factor is the finite size of the simulation do-
main, and the other is the long-range character of both
hydrodynamic and Coulomb interactions. These problems
become particularly important because some of the meth-
ods to simulate a constant-temperature thermal bath are
believed to lead to the screening of hydrodynamic inter-
actions. This is obviously not acceptable in the simulation
where the long-range character of hydrodynamic interac-
tions is expected to be important [33].

Following [26,27], we argue that hydrodynamic inter-
actions are in fact effectively screened in our system and,
therefore, that the domain size in our simulation is quite
sufficient and the heat bath procedure described above is
benign and reliable.

To understand the situation, it is worth discussing the
major point —the screening of hydrodynamic interactions.
To begin with, why are hydrodynamic interactions long-
ranged? That fact can be understood well from the point
of view of momentum conservation. Consider a particle
immersed in a fluid and suppose that we pull this par-
ticle with an externally applied force (such as gravity).
Obviously, this force transfers momentum into the system
and, however large the container may be, this momentum
must be transported away through the container walls.
This necessitates the long-range character of the hydro-
dynamic field. More accurately, if we surround our object
by an arbitrarily large closed surface, then (under the sta-
tionary conditions) the outflow of momentum through this
surface must be equal to the inflow of momentum due to
the external force. Because of the obvious analogy with

the Gauss theorem in electrostatics, we see that hydro-
dynamic field is just as long-ranged as the Coulomb field
(even though it has a more complicated vector structure).

The above description must be modified significantly
when the applied external force is due to the electric field
and the solution is neutral as a whole. In this case, there
is no overall inflow of momentum into the system, and
therefore, there should not be any outflow through the
walls of the container. More specifically, if there is one
negatively charged macroion as in our simulation, it is
surrounded by positively charged counterions and nega-
tively charged coions such that the total charge of the
crowd effectively vanishes at some finite distance. In the
simple case of the Debye-Hückel theory, this happens at
about the Debye screening length λD from the macroion
surface. Therefore, no momentum is transported further
away, and hydrodynamic interactions are screened at the
distances of the order of λD [26,27].

In this paper, we treat a more complicated situation
in which the Debye-Hückel theory does not apply and it
is not easy to judge a priori at which distances the hy-
drodynamic interactions are screened. Nevertheless, since
the system is neutral, hydrodynamic interactions must be
screened. We therefore perform a special test (described
in Sect. 3.2.1) looking at the dependence of the macroion
drift on the simulation domain size. We find that the drift
is essentially size-independent at L > 20a which is the
direct manifestation of the screening of hydrodynamic in-
teractions.

Since hydrodynamic interactions are screened, our sim-
ulation is not very sensitive to the method of maintaining
the constant temperature. To test it, we have performed
separate runs at weak electric fields, E ≤ 0.3ε/ae, in which
case we can run the simulation even without any heat
drainage for a significant period of time before any no-
ticeable heating of the system; the results of these control
runs are within error bars of the data obtained using the
thermal bath (Fig. 5).

3 Simulation results

3.1 General properties

Our simulation results are shown in Figures 1-7. Figure 1
is a bird’s-eye view of (a) all the ions and (b) the vicinity
of the macroion. Counterions are shown in light blue and
coions in dark blue (neutral atoms are not shown). In this
figure, the macroion charge is taken to be Q0 = −30e,
its radius R0 = 3a, counterion valence Z = 3, and the
electric field E = 0.3ε/ea. It is seen that the macroion
is predominantly covered by the counterions. As in the
case without the electric field [23], the radially integrated
charge has a sharp positive peak at a distance about a
from the macroion surface. This peak is due to the positive
counterions being adsorbed on the macroion surface. The
value of the peak charge under the conditions of Figure 1
is Qpeak ≈ 1.6|Q0|.

Figure 2 demonstrates the time history of (a) the
“peak” charge and (b) the macroion drift speed for the
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Fig. 1. Bird’s-eye view of (a) all the ions in the simulation
domain and (b) the screening ion atmosphere within 3a from
the macroion surface. A macroion with charge Q0 = −30e and
radius R0 = 3a is a large sphere in the middle; counterions
(Z = 3) and monovalent coions are shown by light and dark
blue spheres, respectively. The arrow to the right shows the
direction of the electric field (x-axis), with E = 0.3ε/ea.

parameters of Figure 1. At time t = 10τ , we switch on the
external electric field. There is a short transient phase dur-
ing which a charge-inverted complex is formed through ad-
sorption of counterions to the macroion and condensation
of coions on the counterions. This process is reflected in a
rather quick rise in Qpeak, as is shown in Figure 2(a). After
the transient phase, we observe a drift of the macroion in
the positive direction along the applied field. The fact that
the drift velocity is positive for the negative bare charge of
the macroion (Q0 < 0) is a direct manifestation of charge
inversion such that counterions are so strongly bound that
they pull the macroion with their motion.

Fig. 2. Time history of (a) the peak charge Qpeak (defined
as the maximum of radial charge distribution around the
macroion center) and (b) the macroion speed Vx normalized
by thermal velocity of neutral particles v0. The macroion com-
plex drifts positively along the external electric field of E > 0,
which directly indicates the inversion of the charge sign.

Note that the drift velocity shown in Figure 2(b) is
small compared to the thermal velocity v0 of neutral par-
ticles, 〈Vx〉 ∼ 0.05v0. Under this condition, exchange of
momentum between the macroion and neutral particles is
slow, and it requires many collisions (compare the similar
system in Ref. [34]). Therefore, in terms of hydrodynam-
ics, we are in the linear regime. It means that friction force
should be linear in the macroion velocity and we expect
the average drift speed to be given by the force balance
condition, Q∗E − νVx = 0, where Q∗ is the effective net
charge of the macroion complex and ν is the hydrody-
namic friction coefficient. We shall discuss later the pos-
sibilities of determination of the effective net charge Q∗
based on this condition.

Figure 2 also shows significant temporal fluctuations
in the drift speed. Inspection reveals that they are larger
than what one expects for random kicks of neutral par-
ticles. These fluctuations indicate that neither the coun-
terions permanently stick to fixed points on the macroion
nor the coions attach to the counterions, but that they are
being replaced from time to time. The fluctuations of this
type are actually seen in a video movie.

3.2 Parameter dependences

3.2.1 Linear regime

The dependence of the average macroion drift speed Vdrift

on the electric field is shown in Figure 3. In this figure, we
show together the results of several runs, corresponding to
different values of the macroion charge Q0 and macroion
radius R0. First and foremost, the sign of the drift veloc-
ity in moderate fields corresponds to the sign of inverted
charge. This is the central observation of our work. The
figure clearly demonstrates the overall pattern of the drift
velocity dependence on the applied field, beginning with



Motohiko Tanaka and A.Yu. Grosberg: Electrophoresis of a charge-inverted macroion complex 375

Fig. 3. Dependence of the macroion drift speed Vdrift (in the
units of v0, the thermal speed of neutral particles) on the elec-
tric field E for a macroion of various radii and charges: R0 = 3a
and Q0 = −30e (filled circles); R0 = 4a and Q0 = −50e (open
triangles); R0 = 5a and Q0 = −80e (open circles); and R0 = 5a
and Q0 = −51e (open squares). The valence of counterions is
Z = 3.

the linear regime in a weak field, followed eventually by a
breakdown of charge inversion in a strong field.

Let us discuss the linear drift regime for small elec-
tric fields E ≤ 0.2|Q0|/εR2

0, where Vdrift increases linearly
with the field strength. This regime corresponds to the
usual Ohm’s law, where the net charge of the complex is
insensitive to the strength of the electric field. A macroion
drifts together with its strongly adsorbed counterions as
a complex. That is, the electric field is not strong enough
to affect the binding of counterions to the macroion.

At this stage, it is necessary to check the issue of hy-
drodynamic interactions and their screening. For that pur-
pose, we show in Figure 4 the effect of the simulation do-
main size L on the macroion drift speed. By a series of the
runs with different domain sizes and under fixed number
density of neutral particles and ionic strength, we have
confirmed that at L = 32a, which is the domain size for
the majority of our simulations, the domain-size depen-
dence is essentially leveled off. This is to be contrasted
with polymer chains [33], in which case hydrodynamic in-
teractions lead to the finite-size effect essentially linear in
a/L.

We have also inspected the fluid flow of neutral
particles around the macroion. When rapid fluctuations
are averaged out, this flow field does not exhibit any
patterns protruding away from the macroion. This fact
implies that the flow of neutral particles induced by the
motion of the macroion and other ions is screened at
short distances [26,27].

The saturation of the a/L-dependence (Fig. 4) and the
inspection of neutral particle flow patterns both confirm
that hydrodynamic interactions are screened in our sys-
tem, thus making reliable our simulation approach based
on the finite domain and the heat bath. The thermal bath

Fig. 4. Effect of the finite domain size L on the drift speed
Vdrift for a macroion with R0 = 3a, Q0 = −30e, the electric
field E = 0.3ε/ae, and counterion valence Z = 3. The error
bars correspond to the root mean-square velocity fluctuations
as seen in Figure 2.

at the distant boundaries does not affect the measured
macroion mobility.

The small electric-field regime is characterized by the
mobility, µ = 〈Vx〉 /E. This quantity is plotted in Figure 5
as a function of the macroion bare charge Q0, or, more
specifically, on the surface charge density of the macroion
|Q0|/R2

0.

3.2.2 Can we determine net charge based on the mobility
measurement data?

Let us now discuss a practically important question: Can
we determine the effective net charge of the macroion com-
plex Q∗ based on the data of mobility measurements, i.e.,
based on the data of Figures 5-7? Physically, as we have al-
ready mentioned, the charge Q∗ is determined by the force
balance condition Q∗E − νVx = 0, or Q∗ = µν. There-
fore, determination of the net charge requires knowledge
of both the friction coefficient ν and the mobility µ.

Importantly, the friction coefficient cannot be deter-
mined by the usual Stokes formula νS = 6πηR, where η is
the solvent viscosity. The problem is that the real friction
is enhanced by the screening of hydrodynamic interactions
[26,27]. The Stokes formula is simply understood by the
fact that the friction force in general should be propor-
tional to η(v/A)B2, where A is the length scale over which
velocity changes, B2 is the relevant surface area. For the
Stokes problem, we have A ∼ B ∼ R0. By contrast, when
the drift is caused by the action of the electric field on
the overall neutral system, the distance A becomes much
smaller. In the Debye-Hückel theory, it turns out to be of
the order of the Debye screening length, A ∼ λD. In this
case, the friction coefficient becomes

ν = νSR0/λD , (1)

i.e., it is enhanced by the factor R0/λD compared to the
usual Stokesian friction. Although we work under the con-
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Fig. 5. Dependence of the macroion mobility µ on the surface
charge density Q0/R2

0 for the macroion radius R0 = 3a (open
triangles), R0 = 5a (open circles), and R0 = 7a (open dia-

monds), where µ0 = v0/(|Q(0)
0 |/ε(R

(0)
0 )2) with Q

(0)
0 = −30e

and R
(0)
0 = 3a. The valence of the counterions is Z = 3,

the number of the Z : 1 salt is N+ = (N−e + |Q0|)/Ze and
N− = 300, the electric field is E = 0.3ε/ae, and the temper-
ature is e2/εakBT = 5. The filled circles and triangles show
the cases with reduced number of the Z : 1 salt such that
N− = 90 and 30, respectively. The crosses are the reference
data obtained without the thermal bath for R0 = 5a and the
Z : 1 salt with N− = 300.

ditions where the Debye-Hückel theory is not applicable,
and we do not know exactly which length should be there
instead of λD in equation (1), this length is clearly smaller
than R0 and independent of R0. Therefore, the friction co-
efficient is proportional to R2

0 —unlike the more familiar
Stokes case where it scales like R0.

Under usual circumstances where the charge Q∗ is
known, the friction coefficient scaling as R2

0 implies that
mobility µ = Q∗/ν ∝ Q∗/R2

0 is determined by the surface
charge density, not by the charge and the surface area sep-
arately. This fact was known to M. Smoluchowski already
a century ago [35]. In our simulation, effective charge is
not known a priori, and the logic needs to be reversed.
Figure 5 indicates that mobility µ is essentially a constant
when the macroion bare surface charge density is not too
small (|Q0|a2/eR2

0 ≥ 3). Given that ν ∝ R2
0, we conclude

that the effective bare charge Q∗ = µν is proportional to
the surface area of the macroion; namely, charge inversion
is characterized by the overcharging density. This agrees
with the theory [20,25].

In order to perform at least a very rough quantita-
tive estimate of charge Q∗ based on the mobility data,
we need to know the Stokesian friction coefficient νS (or
equivalently, we need to know the viscosity of our model
solvent). We measure it in a separate molecular-dynamics
run, by observing an exponential decay of the macroion
velocity starting from 0.5v0 for the case without an electric
field. We find νS ≈ 9.3m/τ for a spherical particle of the
radius R0 = 3a and νS ≈ 18.2m/τ for the macroion com-
plex with adsorbed counterions and coions. These two esti-

mates provide lower and upper bounds for the charge Q∗.
Assuming R0/λD ≈ 6 and µ ≈ 0.5µ0 (saturation regime in
Fig. 5) yields the inverted charge Q∗ between 7e and 20e.
This is in rough agreement with the Qpeak measurements.

Special attention must be paid to the small bare sur-
face charge density case, for which Figure 5 indicates
the decrease in the reversed mobility. For some cases,
the reversed mobility even disappears altogether, chang-
ing to normal, nonreversed mobility, µ < 0 when the
macroion bare surface charge density decreases to about
|Q0|a2/eR2

0 ∼ 1. It turns out that this is the manifestation
of correlations between Z-ions in the bulk solution away
from the macroion. Indeed, when the macroion is only
weakly charged, the correlations of Z-ions in its vicin-
ity are not much stronger than in the bulk, which sup-
presses charge inversion. A simple estimate shows that,
under the conditions when µ gets small or negative in
Figure 5, the “Wigner cell” radius of the Z-ions on the
macroion surface, RW = 2R0(eZ/|Q0|)1/2 (which is about
3.4a for |Q0|a2/eR2

0 ≈ 1 and Z = 3) becomes comparable
to the average spacing between the Z-ions in the bulk.
The inspection of the radial charge distribution functions
around the macroion for this case agrees with this inter-
pretation. It shows that the counterions are loosely bound
to the macroion, and that the coions form relatively strong
bonds with the counterions and drift together with them.

To examine the above interpretation further, we per-
form special runs with reduced concentration of the Z : 1
salt. The results of these runs are shown in Figure 5 with
filled circles and triangles for the N+ = (N−e + |Q0|)/Ze
Z-ions with N− = 90 and 30 negative coions, respectively.
As anticipated, with fewer Z-ions in the bulk, charge in-
version is not interrupted even at small macroion bare
charges. We regard this a convincing proof that charge in-
version occurs at small concentration of the Z-ions despite
of a larger entropy penalty.

Figure 5 also shows with crosses the data of the con-
trol run performed under the condition of the weak elec-
tric field without any heat drainage (see Sect. 2.2). These
data are within error bars of the cases with the simulated
thermal bath.

The dependence of the macroion mobility µ on the
valence of the counterions Z in Figure 6 is physically in-
teresting, and also important for application purposes. For
the cases shown with filled and open circles, the surface
charge density of the macroion is chosen nearly the same
|Q0|/R2

0 ∼ 3 so that they reside in the saturation regime of
Figure 5. We emphasize that the mobility for these cases is
given by the same curve. The mobility of the macroion is
negative when counterions are monovalent Z = 1, because
there is no charge inversion but only regular Debye screen-
ing. Thus, the charge inversion phenomenon does not oc-
cur in the solution of monovalent salt (provided that the
co- and counterions have equal radius). For Z ≥ 2, charge
inversion does take place, as manifested by the positive
mobility. These observations agree with a previous study
for planar charged surfaces [18]. A remarkable finding is
that the mobility here is maximized for the intermedi-
ate valence, Z ≈ 4, unlike the peak inverted charge that
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Fig. 6. Dependence of the macroion mobility µ on the valence
of the counterions Z for the runs: R0 = 3a and Q0 = −30e
(filled circles), R0 = 5a and Q0 = −80e (open circles),
and R0 = 5a and Q0 = −40e (filled squares). Here, the
number of the Z : 1 salt is N+ = (N−e + |Q0|)/Ze and
N− ≈ 300, the external electric field is E = 0.3ε/ae, where

µ0 = v0/(|Q(0)
0 |/ε(R

(0)
0 )2 with Q

(0)
0 = −30e and R

(0)
0 = 3a.

A series of the runs with reduced number of the Z : 1 salt
N− ≈ 30, R0 = 5a, and Q0 = −80e are shown with open
triangles.

accounts for static charge distribution of mainly counteri-
ons [23].

It is also noted in Figure 6 that, when the surface
charge density is reduced, both the magnitude of reversed
(positive) mobility and the range of Z where it occurs
shrink as shown by the square symbols in the figure.
The mobility for divalent Z-ions is now negative. This
corresponds to the small surface charge density regime
|Q0|/R2

0 ∼ 1.6 in Figure 5. Yet, the mobility is maximized
for the intermediate valence, Z ∼= 5 in this case. Also
shown in Figure 6 are the results of the control runs per-
formed with reduced number of Z-ions (discussed above in
connection with Fig. 5). They again reproduce the optimal
valences for charge inversion.

Although somewhat speculative, we can try to apply
the result of Figure 6 to explain the electrophoretic mo-
bility measurements of nucleosome core particles in cation
solution [14]. What was observed is the increase in the
magnitude and range of the cation concentration for oc-
currence of reversed mobility when spermidine salt (+3)
was replaced with spermine salt (+4), while charge rever-
sal was not observed for any concentration of Mg+2. It is
worth stressing that nucleosome particles is a complicated
system in which many aspects may be important. What
we would like to say here is that our results may be at least
one of the factors relevant to the experiments reported in
the literature [14].

The dependence of the macroion mobility on the salt
ionic strength, nI = (Z2N++N−)/L3 is shown in Figure 7
for the counterion valence Z = 3 and the temperature
e2/εakBT = 5. Here, the ionic strength is related to the
Debye length by λD = (εkBT/8πnIe

2)1/2. The mobility

Fig. 7. Dependence of the macroion mobility µ on the salt
ionic strength, nI = (Z2N+ + N−)/L3. The parameters are
Q0 = −30e, R0 = 3a, E = 0.3ε/ae, Z = 3 and e2/εakBT = 5,
which yield the Debye length λD ∼ 0.45a for nI = 0.04a−3.

increases quite rapidly for small ionic strength, and is well
fit by µ ∝ n

1/2
I as shown by a dashed curve.

It is a legitimate concern to ask whether the data of
Figure 7 are affected by the correlations of Z-ions in the
bulk which we discussed in connection with Figure 5. The
answer is negative; these data correspond to the saturation
regime of Figure 5. The distance between Z-ions in the
bulk drops to the value comparable to the Wigner-Seitz
cell only when nIa

3 gets as large as 0.1 or more.
The increase in the mobility with ionic strength con-

tradicts the intuition based on the Debye-Hückel theory,
and deserves a comment. As it is explained in detail in [25]
and understood by a number of authors cited there, charge
inversion itself grows with ionic strength. This happens
because charge inversion is the result of interplay between
the repulsion of counterions from each other and the at-
traction of each of them to its own correlation hole. The
latter occurs at a much shorter distance than the former,
and only the repulsion is strongly affected by screening.
This is why the amount of charge inversion, hence the
macroion mobility, grows with increasing ionic strength.

It is also worth mentioning that the quick rise in the
reversed mobility at small ionic strength in Figure 7 agrees
with the colloidal mobility measurement for the case with
trivalent salt LaCl3 [8,16].

3.2.3 Nonlinear regime

Let us now return to Figure 3 to discuss the regime that
is nonlinear in the applied electric field. As the figure indi-
cates, the charge-inverted shell around the macroion is de-
stroyed for large electric fields. Moreover, the critical field
Ec at which this happens is independent of the macroion
size, which leads us to an estimate

Ec ≈ 0.5|Q0|/εR2
0 . (2)

This result is quite interesting. Indeed, |Q0|/εR2
0 is the

electric field on the macroion surface produced by the
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macroion bare charge. Why does the critical field scale
with the bare charge of the macroion instead of the net
charge of the complex? The reason is due to correlations
between screening ions. We noted while discussing Fig-
ure 2 that the counterions on the macroion surface are
being replaced from time to time. Consider how one Z-ion
can depart from the macroion surface. Since this ion is sur-
rounded by a correlation hole on the surface, its departure
requires work against the unscreened bare electric field of
the macroion as long as its distance from the surface is
smaller than the distance between the adsorbed Z-ions.
Therefore, departure from the surface becomes possible
when the external field becomes comparable with this un-
screened field; the charge-inverted complex is no longer
stable at such a field strength.

The critical electric field in realistic situations is esti-
mated to be very large. For the parameters R0 ≈ 20 Å and
Q0 ≈ 30e, the critical electric field becomes as large as
Ec ≈ 0.5Q0/εR2

0 ≈ 67 V/µm, where we take into account
the dielectric constant of water ε ≈ 80 [36]. Although the
critical field is large, it gives small energy to the elec-
tric dipole of a water molecule, d ≈ 2 × 10−18esu · cm:
Ecd/kBT ∼ 0.11 < 1. This verifies the use of the model
solvent of neutral particles in the present molecular dy-
namics simulations. In practice, the applied electric field
is not expected to disrupt the charge-inverted macroion
complex.

4 Summary

In this paper, we performed molecular-dynamics simula-
tions with the use of neutral-particle solvent, and mea-
sured the drift speed of a macroion to obtain its mobility
under electrophoresis in a multivalent Z : 1 salt solution.

A weak electric field pulled the macroion complex in
the direction determined by the net inverted charge, in-
stead of disrupting it. The reversed mobility of the com-
plex, µ = Vdrift/E, was shown to be nearly constant for the
weak electric fields. We showed the functional dependences
of mobility in Figures 3, 5 and 6 of Section 3, respectively,
against the electric-field strength E, the surface charge
density of the macroion Q0/R2

0, and the valence Z of the
counterions. The mobility was a function of the surface
charge density, instead of the bare charge and radius of
the macroion separately. The reversed mobility increased
rapidly with the salt ionic strength nI as µ ∝ n

1/2
I . In-

terestingly, the reversed mobility took a maximal value at
the intermediate valence of the counterions Z ∼= 4.

We confirmed the screening of hydrodynamic inter-
actions at a few Debye length. No specific flow pat-
terns of neutral particles, which one would expect for the
sphere moving in a viscous fluid, were detected around a
macroion.

In the large-field regime, although academic because
of its huge value, electrophoresis was strongly nonlinear,
and the field stripped the screening counterions off the
macroion. The mobility of the macroion complex dropped
significantly from that of the linear regime, and the sign
of the mobility flipped back to the nonreversed one above

the critical electric field, which was approximately half the
macroion unscreened field.

In this study, we explicitly simulated the neutral par-
ticles of the solvent to produce a reliable hydrodynamic
background. On the other hand, the limits of computa-
tional resources prevented us from inclusion of the 1 : 1
salt. The screening in our system was exclusively accom-
plished by the Z : 1 salt. For this reason, we are not ready
to make a quantitative comparison of our data with the
real experiments. The simulation including the 1 : 1 salt
is currently under way.

The authors are grateful to Prof. B. Shklovskii and Dr. T.
Nguyen for discussions, and to Dr. J.W. Van Dam for reading
the manuscript. One of the authors (M.T.) thanks Prof. K.
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